CRP binding and transcription activation at CRP-S sites.
نویسندگان
چکیده
In Haemophilus influenzae, as in Escherichia coli, the cAMP receptor protein (CRP) activates transcription from hundreds of promoters by binding symmetrical DNA sites with the consensus half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11). We have previously identified 13 H. influenzae CRP sites that differ from canonical (CRP-N) sites in the following features: (1) Both half-sites of these noncanonical (CRP-S) sites have C(6) instead of T(6), although they otherwise have an unusually high level of identity with the binding site consensus. (2) Only promoters with CRP-S sites require both the CRP and Sxy proteins for transcription activation. To study the functional significance of CRP-S site sequences, we purified H. influenzae (Hi)CRP and compared its DNA binding properties to those of the well-characterized E. coli (Ec)CRP. All EcCRP residues that contact DNA are conserved in HiCRP, and both proteins demonstrated a similar high affinity for the CRP-N consensus sequence. However, whereas EcCRP bound specifically to CRP-S sites in vitro, HiCRP did not. By systematically substituting base pairs in native promoters and in the CRP-N consensus sequence, we confirmed that HiCRP is highly specific for the perfect core sequence T(4)G(5)T(6)G(7)A(8) and is more selective than EcCRP at other positions in CRP sites. Even though converting C(6)-->T(6) greatly enhanced HiCRP binding to a CRP-S site, this had the unexpected effect of nearly abolishing promoter activity. A+T-rich sequences upstream of CRP-S sites were also found to be required for promoter activation, raising the possibility that Sxy binds these A+T sequences to simultaneously enable CRP-DNA binding and assist in RNA polymerase recruitment.
منابع مشابه
Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit.
Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC...
متن کاملGenomic mapping of cAMP receptor protein (CRPMt) in Mycobacterium tuberculosis: relation to transcriptional start sites and the role of CRPMt as a transcription factor
Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRP(Mt)) at endogenous expression levels using a specific α-CRP(Mt) antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRP(Mt) binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed ...
متن کاملCyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli.
The Escherichia coli rhaSR operon encodes two AraC family transcription activator proteins, RhaS and RhaR, which regulate expression of the l-rhamnose catabolic regulon in response to l-rhamnose availability. RhaR positively regulates rhaSR in response to l-rhamnose, and RhaR activation can be enhanced by the cyclic AMP (cAMP) receptor protein (CRP) protein. CRP is a well-studied global transcr...
متن کاملNon-canonical CRP sites control competence regulons in Escherichia coli and many other γ-proteobacteria
Escherichia coli's cAMP receptor protein (CRP), the archetypal bacterial transcription factor, regulates over a hundred promoters by binding 22 bp symmetrical sites with the consensus core half-site TGTGA. However, Haemophilus influenzae has two types of CRP sites, one like E.coli's and one with the core sequence TGCGA that regulates genes required for DNA uptake (natural competence). Only the ...
متن کاملTranscription activation at the Escherichia coli melAB promoter: the role of MelR and the cyclic AMP receptor protein.
MelR is a melibiose-triggered transcription activator that belongs to the AraC family of transcription factors. Using purified Escherichia coli RNA polymerase and a cloned DNA fragment carrying the entire melibiose operon intergenic region, we have demonstrated in vitro open complex formation and activation of transcription initiation at the melAB promoter. This activation is dependent on MelR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 383 2 شماره
صفحات -
تاریخ انتشار 2008